
THEORETICAL MODEL TO DESCRIBE DISPERSIVE NONLINEAR
PROPERTIES OF LEAD ZIRCONATE-TITANATE CERAMICS

K. Van Den Abeele* and M. A. Breazealeo

National Center for Physical Acoustics
University of Mississippi

University, MS 38677

ABSTRACT

Frequency dependence of the first ultrasonic nonlinear parameter and

the abnormally high third harmonic signals measured in lead zirconate-

titanate (PZT) ceramics suggest the introduction of a revised theoretical

model combining higher order nonlinearity and generalized dispersion.

The new nonlinear dispersive equation has been solved by perturbation

theory.  We find a solution in the form of a set of parameters whose

magnitude is obtained from a fit of the experimental data.  The parame-

ters are independent of frequency and initial amplitude.  The model is

applied to four samples, and the results are discussed.  The validity of

the perturbation theory in these cases is tested.
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I. INTRODUCTION

Peculiarities of sound wave behavior in crystals is shifting the

attention of scientists from the linear theory to more complicated

models which describe phenomena like dissipation, dispersion, and/or

nonlinear propagation.  To describe sound propagation in solids in the

linear approximation (Hooke's law approximation) one can write the

longitudinal wave equation in the form

ρo

∂ 2U

∂ t2 = M2

∂ 2U

∂a2 (1)

where ρo is the unstrained mass density, U is the longitudinal displace-

ment, a is the distance measured along the propagation direction in the

unstrained crystal and M2 is a linear combination of second order elastic

constants depending on the direction of propagation (M2 = K2, with K2 as

listed in Table 1).  This formulation is convenient because it allows one

to account for a number of phenomena in a straightforward way.  For

absorption, one simply allows complex values of M2.

To describe nonlinearity one can account for propagation in a

pure mode direction (for cubic lattices one of the three principal direc-

tions), by writing the differential wave equation in the form1:

ρo

∂ 2U

∂ t2 =
∂ 2U

∂a2 M2 + M3

∂U

∂a
+ M4

∂U

∂a

 
 

 
 

2

+
 

  
 

  (2)

2



where M3 = 3K2 + K3 is a combination of both second and third order

elastic constants, also depending on the direction of propagation (see

Table 1) .   M4 contains elastic constants up to the fourth order

(M 4 =
3

2
K2 + 3K3 +

1

2
K4 ) .

For dispersion one can modify Eq.(1) by inclusion of a fourth

order derivative with respect to the propagation distance:

ρo

∂ 2U

∂ t2 = M2

∂ 2U

∂a2 + Γ2

∂ 4U

∂a4 (3)

where Γ2 is the dispersion constant.

The solution of Eq.(2) accounts for the generation of second har-

monics (and higher harmonics) during the propagation of an initially

sinusoidal wave.  This solution can be obtained through use of a pertur-

bation technique2-4 or a more complicated Fourier analysis1.  Such a

solution has led to the introduction of the nonlinearity parameter, the

negative ratio of the coefficient of the nonlinear term to that of the

linear term in the nonlinear wave equation,

β = −
3K2 + K3

K2

=
8A2

A1
2k2a

(4)

where A1 and A2 are the measured amplitudes of the fundamental and

its generated second harmonic; k=2π/λ  is the propagation constant.  If

the amplitude of the initial ultrasonic wave is small enough, the ampli-

tude of the third harmonic signal, A3, is expressed as1
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A3 =
A1

3a2k 4

32

3K2 + K3

K2

 

 
 

 

 
 

2

1 +
16

9k 2a2 1 −
K2 K4 + 6K3 + 3K2( )

2 K3 + 3K2( )2

 

 
 

 

 
 

2

(5)

in which K4 is a combination of fourth order elastic constants.  In Cu

single crystals (and almost all other crystals) the amplitude of K4 is of

the order of 10K3.  In experimental situations using ultrasonic frequen-

cies, k2a2 is generally of the order of 105, so that for most crystalline

samples one can make the approximation

A3 ≅
A1

3a2k 4

32

3K2 + K3

K2

 

 
 

 

 
 

2

  . (6)

Recently Na and Breazeale5 found that the third harmonic mea-

sured in lead zirconate-titanate (PZT) samples was much too large to

allow them to make the approximation given in Eq.(6).  To satisfy their

data they introduced a second nonlinearity parameter which was

expressed in terms of measured quantities as:

β2 =
32

a2k 4

A3

A1
3   . (7)

For most crystalline solids this would mean that

β2 = β 2  ; (8)

however, its definition allowed flexibility in data interpretation for PZT.

Na and Breazeale stated that serious deviations from Eq.(8) in experi-

mental data implies that K4 no longer is negligible and/or that a nonlin-
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ear equation different from Eq.(2) must be used to describe the nonlin-

ear wave propagation.

For single crystals, determination of the nonlinearity parameter

from velocity measurements and harmonic generation yields values for

the third order elastic constants which agree with other methods6.  The

results are independent of frequency.  Also, the relationship given by

Eq.(8) is followed for single crystals whenever it has been tested3.  This

means that fourth order elastic constants in single crystals are indeed

negligible.

When the nonlinear properties of PZT were investigated they were

found to be considerably different from those of single crystals.  Na and

Breazeale used their measurements to report for the first time a

frequency dependence of the nonlinearity parameter β  at room

temperature.  In addition, they found that for their PZT samples the

quantities β2 do not satisfy Eq.(8) at 10 MHz.  The observed third

harmonic amplitudes were found to be much larger in PZT than one

would calculate from Eq.(6).

In this paper we focus on the doubly anomalous behavior of PZT

ceramics and propose a solution from theoretical analysis.  The sugges-

tions of Na and Breazeale about the role of large fourth order elastic

constants and/or the use of a different nonlinear equation have served

as a starting point for this theoretical investigation.  First, we formulate

the model by combining the nonlinear equation of Thurston and Shapiro

(in which we assume that K4 is non-negligible) with a generalization of
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the dispersion equation.  Then we use the perturbation method to find

an approximate solution which we apply and discuss in connection with

the physical properties of polarized and unpolarized K1 and S1 PZT

samples (Table 2).  Finally, we examine the error made by using pertur-

bation theory in our model.

II. THEORETICAL MODEL

A.  Generalization of the differential equation

The third harmonic signals observed by Na and Breazeale5 were

too large to satisfy Eq.(8), in which the influence of K4 is considered to

be negligible.  For the unpolarized K1 sample at 10 MHz they observed a

value of β2 = 103.8, whereas β2 would be only 57.8.  For the S1 polarized

sample at the same frequency the ratio of β2 to β2 is even more strik-

ingly different from unity:  β2/β2 = 127.

Since both K2 and K3 are known from the measurement of the

velocity and the nonlinearity parameter at low frequencies (e.g., K2 =

14.75 x 1010 kg/ms2 and K3 = -156 x 1010 kg/ms2 for an unpolarized K1-

sample), we can consider Eq.(5) as a function of K4 only.  Substituting

this equation into Eq.(7), we obtain an expression for β2 as a function of

the fourth order elastic constant.  Knowing the experimental β2 value,

this relation can be inverted numerically for K4 or one can estimate the

fourth order elastic constant from the intersection points of the graphs

in Figure 1.  We have found that the experimental β2 value for the K1

6



sample can only be reached for a value of K4 which is at least three

orders of magnitude larger than K3.  In an analogous way we have found

that the values of K4 for the other PZT samples must be even larger:

almost five orders of magnitude for the polarized S1 sample.

As a consequence of these large K4 values, the quantity M4 (=3/2

K2 + 3K3 + 1/2 K4) in Eq.(2) must be large as well.  This means that this

term is the most important term in the expression for the third

harmonic signal amplitude.  In this situation we introduce an approxi-

mation that replaces Eq.(6):

A3 ≅
ak3A1

3

24

M4

M2

. (9)

Indirectly, this expression calls for a new definition of β2.  This new

definition, which is distinguished by a prime, is

β2
′ =

24

ak3

A3

A1
3 .        (10)

This new definition makes it possible to obtain an approximate value of

the fourth order elastic constant in cases where its influence is non-neg-

ligible.  The third harmonic signal measurements of Na and Breazeale

have been analyzed in this way.  They suggest that higher order elastic

constants should be taken into account in the nonlinear differential

equation.
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Consequently, to make further investigation we start with the

general nonlinear differential equation given by Thurston and Shapiro1:

ρo

∂ 2U

∂ t2 =
∂ 2U

∂a2 g
∂U

∂a

 
 

 
        (11)

with

g
∂U

∂a

 
 

 
 = Mn

∂U

∂a

 
 

 
 

n −2

n =2

∞

∑ = M2 + M3

∂U

∂a
+ M4

∂U

∂a

 
 

 
 

2

+ M5

∂U

∂a

 
 

 
 

3

+       (11a)

In comparison with the linear equation, it is worthwhile to note that the

multiplier of 
∂ 2U

∂a2  is no longer a constant.  It is a series expansion in the

strain 
∂U

∂a
.

The dispersion effects are included in a first approximation by

modifying the linear wave equation with a term proportional to the

fourth derivative of the displacement with respect to the propagation

distance, in analogy with the generalization of the linear wave equation

[Eq.(3)].  We have found that this still does not give an adequate nonlin-

ear equation.  Therefore, we have replaced Γ2 in Eq.(3) by a series

expansion in the strain 
∂U

∂a
.  The combination of both nonlinear phenom-

ena and dispersion effects lead to the following equation:

ρo

∂ 2U

∂a2 = g
∂U

∂a

 
 

 
 

∂ 2U

∂a2 + h
∂U

∂a

 
 

 
 

∂ 4U

∂a4   ,        (12)

where
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g
∂U

∂a

 
 

 
 = M2 + M3

∂U

∂a
+ M4

∂U

∂a

 
 

 
 

2

+ M5

∂U

∂a

 
 

 
 

3

+       (12a)

and

h
∂U

∂a

 
 

 
 = Γ2 + Γ3

∂U

∂a

 
 

 
 + Γ4

∂U

∂a

 
 

 
 

2

+ Γ5

∂U

∂a

 
 

 
 

3

+      (12b)

The purpose of our investigation is to determine the number and magni-

tudes of terms required in Eq.(12) for an adequate description of the

behavior of PZT.

B.  Approximate solution

Even though β, and especially β2, can be large for PZT ceramics, the

second and third harmonic amplitudes measured during the experi-

ments are still small compared with the fundamental amplitude.  This

means that we are looking for small perturbations of an initially well-

known waveform, so that we can use perturbation theory to find a solu-

tion to Eq.(12), and later check the validity of this approach.

We rewrite Eq.(12) in the form

ρo

∂ 2U

∂ t2 − M2

∂ 2U

∂a2 − Γ2

∂ 4U

∂a4 = g
∂U

∂a

 
 

 
 − M2

 
  

 
  

∂ 2U

∂a2 + h
∂U

∂a

 
 

 
 − Γ2

 
  

 
  

∂ 4U

∂a4         (13)

and propose a solution of this dispersive nonlinear equation in the form
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U = U o +U c        (14)

with Uo  the solution of the simplest dispersive linear equation:

ρo

∂ 2Uo

∂t2 − M2

∂ 2U o

∂a2 − Γ2

∂ 4U o

∂a4 = 0 ,        (15)

namely,

Uo = A sin ka − ωt( )         with        ω =
M 2

ρo

  k 1 −
Γ2

M2

k2
 

 
 

 

 
 

1/2

,        (16)

in which A denotes the amplitude of the sinusoidal wave at input (zero

propagation distance).  Substituting Eq.(14) into Eq.(13) and taking into

consideration only the largest contributions on the right hand side (the

zero approximation in terms of the small  factors containing

Uc , 
∂Uc

∂a
, 

∂ 2Uc

∂a2 ,  ), we find that the correction term Uc  must satisfy

ρo

∂ 2Uc

∂ t2 − M2

∂ 2Uc

∂a2 − Γ2

∂ 4Uc

∂a4 = M3

∂U o

∂a
+ M4

∂U o

∂a

 
 
  

 

2

+ M5

∂U o

∂a

 
 
  

 

3

+
 

 
 

 

 
 

∂ 2U o

∂a2

+ Γ3

∂U o

∂a
+ Γ4

∂U o

∂a

 
 
  

 

2

+ Γ5

∂U o

∂a

 
 
  

 

3

+
 

 
 

 

 
 

∂U o

∂a4 .        (17)

Substituting the zero approximation solution Uo  into Eq.(17), this can be

written in the form

ρo

∂ 2Uc

∂ t2 − M2

∂ 2Uc

∂a2 − Γ2

∂ 4Uc

∂a4 = Xn
n=1

∞

∑ sin n ka − ωt( )[ ]        (18)
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where the Xn are:

X1 = −
M2 +2 − k 2Γ2 +2( )k 2 +2A2 +1

22
=1

∞

∑ 1

2 +1

2 +1 
 
  

 
      (18a)

X2 j = −
M2 +1 − k 2Γ2 +1( )k2 +1A2

22 −1
= j

∞

∑ j 2

− j

 
 
  

 
     (18b)

X2 j+1 = −
M2 + 2 − k2Γ2 +2( )k2 + 2 A2 +1

22
= j

∞

∑ 2 j +1

2 +1

2 +1

− j

 
 
  

 
.       (18c)

In Eqs.(18a), (18b), and (18c), the final factors in each term are binomial

coefficients defined as follows:

n

m

 
 
 

 
 
 =

n!

m ! n − m( )! .        (19)

For example, if one considers only the coefficients Mn and Γn with n ≤ 6,

Eq.(18) becomes

ρo

∂ 2Uc

∂ t2 − M2

∂ 2Uc

∂a2 − Γ2

∂ 4Uc

∂a4 = −
M4 − k2Γ4( )k 4A3

4
+

M6 − k2Γ6( )k6A5

8

 

 
 

 

 
 sin ka − ωt[ ]

−
M3 − k2Γ3( )k3A2

2
+

M5 − k2Γ5( )k5A4

4

 

 
 

 

 
 sin 2 ka − ωt( )[ ]

−
M4 − k2Γ4( )k 4A3

4
+

3 M6 − k 2Γ6( )k6A5

16

 

 
 

 

 
 sin 3 ka − ωt( )[ ]

−
M5 − k 2Γ5( )k 5A4

8

 

 
 

 

 
 sin 4 ka − ωt( )[ ]

−
M6 − k 2Γ6( )k6A5

16

 

 
 

 

 
 sin 5 ka − ωt( )[ ]        (20)
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From Eq.(18b) one notices that the coefficients Xn for n even are influ-

enced only by the nonlinear coefficients M  and dispersive constants Γ

having odd indices. Similarly Eqs.(18a and c) show that Xn for n odd is

affected by nonlinear and dispersive coefficients having even indices.

In acoustics dispersion usually is negligible.  Thus, Γ2 is very small.

If Γ2 were identically zero, the exact solution of Eq.(18) would be

Uc =
aXn

2nkM2n =1

∞

∑ cos n ka − ωt( )[ ]        (21)

Let us now assume that Γ2 is very small, but not zero.  In this case, we

introduce a more general series expansion

Uc = aBn
n =1

∞

∑ sin n ka − ωt( )[ ] + aCn cos n ka −ωt( )[ ]        (22)

as a solution of Eq.(18).  The coefficients Bn and Cn can be dependent on

the propagation distance a , but we will assume that their derivatives

with respect to distance is negligible.  By using this substitution and

approximation, we find closed expressions for the coefficients Bn and Cn:

Bn =
−n2 n2 −1( )aΓ2k

4 Xn

n4 n2 −1( )2
a2Γ2

2k 8 + 4k 2n2 M2 − 2n2Γ2k
2( )2       (23a)

Cn =
2nk M2 − 2n2Γ2k

2( )Xn

n4 n2 −1( )2
a2Γ2

2k8 + 4k2n2 M2 − 2n2Γ2k
2( )2 .      (23b)
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Using these expressions, one can write the amplitude An of the nth

harmonic signal:

An =
a Xn

n4 n2 −1( )2
a2Γ2

2k8 + 4k2n2 M2 − 2n2Γ2k
2( )2[ ]1/2        (24)

The amplitudes of the second and third harmonics generated by propa-

gation of an initially sinusoidal wave over a distance a  in a dispersive

nonlinear medium can be evaluated from Eq.(24) by using n=2 or n=3 as

follows:

A2 =
a M3 − k 2Γ3 k2 A2

8

1+ k2 A2
M5 − k2Γ5( )

2 M3 − k2 Γ3( ) +  

M 2 − 8Γ2k
2( )2

+ 9a2Γ 2
2k6[ ]1/2        (25)

A3 =
a M4 − k2Γ4 k3A3

24

1+ k2 A2
3 M6 − k 2Γ6( )
4 M4 − k2Γ4( ) +  

M2 −18Γ2k
2( )2

+144a2Γ2
2k6[ ]1/2   .        (26)

Note that in the non-dispersive case (when all Γn's are negligible) and

when only M2, M3, and M4 are to be taken into account, Eq.(25) reduces

to

A2 =
a M3 k2 A2

8M2

       (27)

which agrees with Eq.(4) used to define the nonlinearity parameter.

Under the same conditions the third harmonic simplifies to
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A3 =
a M4 k3 A3

24M2

       (28)

which is the limit of Eq.(5) for the third harmonic amplitude given by

Thurston and Shapiro for large values of the fourth order elastic

constant K4.

The higher harmonics can be calculated in an analogous way.  The

presence of the factor aknAn in the leading term of the expression for

the nth harmonic means that the amplitudes of the harmonics decrease

rapidly as n increases.

III. DISCUSSION

A.  APPLICATION TO PZT CERAMIC SAMPLES

Now that we have obtained an analytical solution for the disper-

sive nonlinear differential equation in terms of nonlinear constants Mn

and dispersion constants Γn, we can adjust the numbers and find a set of

theoretical parameters to match the experimental observations.  The

samples under consideration are K1 and S1 samples in both polarized

and unpolarized form.  The velocity, density and thickness are summa-

rized in Table 2.  The experiments of Na and Breazeale have been per-

formed at 4 different frequencies of an initially sinusoidal ultrasonic

wave:  5, 10, 15, and 30 MHz.  For each sample, the range of initial
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amplitudes used at these frequencies is listed in Table 3.  The mean

value is written between brackets.  We note that the applied amplitude

diminishes drastically when higher frequencies are used.  Experimental

measurements of the second harmonic signal at the four frequencies

used and application of Eq.(4) lead to the discrete values of the nonlin-

earity parameter β listed in Figure 2.  The nonlinearity parameter shows

a frequency dependent behavior.  Using the solution derived in the

previous paragraphs one can find a set of parameters per sample that fit

each experimental data point.  The values of these parameters are given

in Table 4.  For each sample these nonlinearity coefficients Mn and

dispersion constants Γn are independent of applied frequency and

amplitude.  The nonlinearity parameter β becomes frequency dependent

because of a non-zero magnitude of Γ3.  At a specific frequency β

remains independent of the input amplitude.  This can be seen in Table

5 which lists the results of the theoretical model within the amplitude

range of the experiment for the K1 unpolarized sample.  The value of K4

given in Table 4 was necessary for the theoretical model to produce

third harmonics as large as actually observed in the experiments.  The

definition of ′ β 2  [Eq.(10)] instead of β2 [Eq.(7)] guarantees that the theo-

retical value of the new second nonlinearity parameter is independent

of frequency if Γ4 is negligible.  We also observe that the magnitudes of

the first and this second nonlinearity parameter do not change signifi-

cantly for values of K5 between zero and 1018.

The parameter sets in Table 4 were used to make a theoretical cal-

culation of the nonlinearity parameters for all four of the samples in the

frequency range between 1 and 40 MHz.  The results, using interpolation
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and extrapolation on the initial mean amplitudes, are shown in Figure 2

as full lines.  These theoretical curves fit the experimental data points

with amazingly good agreement.  The results for the K1-unpolarized

sample are listed in detail in Table 6.  It is necessary to allow both posi-

tive and negative values of Γ3 in the model in order to match the exper-

imental measurements for K1 and S1 samples respectively.  The link to a

physical phenomenon to explain this behavior is not yet clear.

Use of this model makes possible to calculate all constants (both

nonlinear and dispersive) from experimental measurements:  K2 from

velocity measurements; K3 and K4 from the first and second nonlinearity

parameters β and ′ β 2  at low frequencies; Γ2 from the velocity dispersion;

Γ3 from the dispersion (frequency dependence) of the first nonlinearity

parameter; Γ4 from the dispersion of the second nonlinearity parameter,

etc.  Since at present there have been no measurement of the third

harmonic signal at different frequencies, we have put a question mark

at the position of the Γ4 value.

B.  Estimation of perturbation theory error

Use of perturbation theory always suggests that a number of

terms are neglected and that only an approximate solution is found for

the general problem.  Therefore it is necessary to check whether the

solution is being used within the range of applicability of the perturba-

tion theory, and the magnitude of the approximation involved.
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First, we can check the magnitude of the calculated amplitudes

compared with the initial amplitude of the pure sinusoidal wave at

input.  Tables 7 and 8, calculated with the set of parameters listed in

Table 4, and with K5 equal to 1018, shows that the fundamental ampli-

tude does not change significantly within the frequency range 1-40 MHz

at the interpolated mean input amplitudes.  The generated amplitudes of

the second and third harmonic signals appear to be measurable, and

they are indeed considerably smaller than the fundamental amplitude;

e.g., of the order of 2 x 10- 3 for K1-unpolarized samples and 10- 2 for S1-

polarized samples at 30 MHz for the second harmonic.  The higher

orders have amplitudes which diminish uniformly for all frequencies.

A second check consists of investigating the error involved when

we took into account only the zero approximation of the small factors

containing Uc , 
∂Uc

∂a
, 

∂ 2Uc

∂a2 , etc . as contributions to the right side of Eq.(13)

after substitution of Eq.(14); i.e., instead of taking into account the com-

plete right side

g
∂U

∂a

 
 

 
 − M2

 
  

 
  

∂ 2U

∂a2 + h
∂U

∂a

 
 

 
 − Γ2

 
  

 
  

∂ 4U

∂a4        (29)

we considered only the first terms:

  M j +2
j =1

∞

∑ ∂Uo

∂a

 
 
  

 

j
∂ 2U o

∂a2 + Γ j +2

∂Uo

∂a

 
 
  

 

j
∂ 4U o

∂a4 = Xn sin n ka − ωt( )[ ]
n=1

∞

∑ 
 
  

 
       (30)

and assumed that the difference between the two is negligible.
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The use of symbolic software enables us to estimate this differ-

ence.  Table 9 gives the percentage of relative error introduced by the

truncation. We defined

Estimated Error (%) = 100 ⋅  
Max1

Max2

       (31)

where

 Max1 = Maxperiod g
∂U

∂a

 
 
  

 
 − M2

 
  

 
  

∂ 2U

∂a2 + h
∂U

∂a

 
 
  

 
 − Γ2

 
  

 
  

∂ 4U

∂a4 − Xn sin n ka − ωt( )[ ]
n =1

∞

∑

with U = U o +U c

and Max2 = Maxperiod Xn sin n ka − ωt( )[ ]
n =1

∞

∑   .

We note that the error never exceeds 5%, except for S1 polarized sam-

ples at 30 MHz.  Looking again at Table 8, we observe that the second

and third harmonic amplitudes for the S1-polarized samples are indeed

substantial and that it might be inaccurate to apply the perturbation

theory for higher frequencies.  For the other samples we may conclude

that the use of the perturbation theory is justified.
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IV.  CONCLUSION

We propose a theoretical model which combines higher order non-

linearity and generalized dispersion effects to interpret the results of

experiments on PZT ceramics reported by Na and Breazeale.  The new

dispersive nonlinear differential equation has been solved by perturba-

tion theory.  It provides an analytical expression for the harmonic

amplitudes generated during propagation in the samples.  We applied

the model to K1 and S1 samples, both polarized and unpolarized, and

found that the analytical solution can be fit to experimental data by

means of one set of parameters in each case.  The introduction of Γ3

accounts for the measured frequency dependence of the first nonlinear

parameter β.  The abnormally high third harmonic signals can be

explained by assuming values for fourth order elastic constants.  It is

important to note that the set of parameters used in the model is inde-

pendent of frequency and initial amplitude.  Even though the physics

behind the new differential equation and the real identity of the

dispersive and nonlinear constants is not completely known at the

moment, it is remarkable that this generalized dispersive-nonlinear

model leads to such an extremely good fit of the data.  The value of K4

was arrived at under the assumption that the dispersion term does not

contribute to the magnitude of the fourth order elastic constant.  We are

investigating the validity of this assumption.  Finally, we believe that

the use of perturbation theory in these cases is justified since the gen-

erated amplitudes are small and because the relative error introduced

by truncating the right hand side of the differential equation generally

is less than 5%.
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FIGURE CAPTIONS

Figure 1:  The influence of K4 on the second nonlinearity parameter β2

[Eqs.(7) and (5)] for different samples of PZT.  The intersection with the

horizontal line (experimental value of β2) gives an indication of the

magnitude of the fourth order elastic constant.

a:  K1-unpolarized    →    K4 ≅  2.5 x 1015 kg/ms2;

b:  K1-polarized    →    K4 ≅  2.3 x 1015 kg/ms2;

c:  S1-unpolarized    →    K4 ≅  25 x 1015 kg/ms2;

d:  S1-polarized    →    K4 ≅  75 x 1015 kg/ms2;

Figure 2:  Frequency dependence of the nonlinearity parameter β for

different PZT samples.  Data points represent experimental measure-

ments.  The lines are the theoretical prediction using the perturbation

solution of the dispersive nonlinear differential equation with parameter

values given in Table 4.
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TABLE CAPTIONS

Table l:  K2 and K3 for [100], [110], and [111] directions.

Table 2:  Physical dimensions and properties of the K1 and S1 samples

of PZT ceramic.

Table 3:  Range of amplitudes (10-10 m) used in the experiments of Na.

Table 4:  List of elastic constants (kg/ms2) and dispersion constants (kg

m/s2) for K1 and S1 samples.

Table 5:  First and second nonlinearity parameter of the unpolarized K1

sample calculated by the dispersive nonlinear model for different ampli-

tudes at 5, 10, 15, and 30 MHz.

Table 6:  First nonlinearity parameter of the unpolarized K1 sample

calculated by the dispersive nonlinear model in the frequency range 1 to

40 MHz.

Table 7:  Calculated relative amplitudes of second to seventh harmonics

resulting from propagation over 9.03 mm in the K1-unpolarized sample.

Amplitude of fundamental at input is given as well as its relative change

at the receiver position;  K2, K3, K4, Γ2 and Γ3 as in Table 4;  we assume

K5 = 1018;  K6, K7, ... = Γ4, Γ5, ... = 0.
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Table 8:  Same as Table 7, for a propagation distance of 8.82 mm in the

S1-polarized sample.

Table 9:  Estimated difference (%) between right hand side of the com-

plete dispersive nonlinear differential equation and the part considered

using the perturbation method.
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Table 1:

Direction K2 K3

[100] C11 C111

[110] C11 + C12 + 2C44

2

C111 + C112 + 2C166

4

[111] C11 + 2C12 + 4C44

3

C111 + 6C112 +12C144 + 24C166 + 2C123 +16C456

9



Table 2:

Sample Velocity Density Thickness

K1-Unpolarised 4334.1 m/s 7850 kg/m3 9.03 ·10-3 m

K1-Polarised 4577.2 m/s 7850 kg/m3 9.07 ·10-3 m

S1-Unpolarised 4320.0 m/s 8010 kg/m3 9.07 ·10-3 m

S1-Polarised 4523.1 m/s 8010 kg/m3 8.82 ·10-3 m



Table 3:

Frequency K1-Unpolarised K1-Polarised S1-Unpolarised S1-Polarised

5 MHz 16.1 - 26.2
(21.15)

18 - 27.8
(22.9)

15.8 - 29.4
(22.6)

17.1 - 28.6
(22.85)

10 MHz 13.7 - 22.6
(18.15)

16.1 - 23.3
(19.7)

14.2 - 28.2
(21.2)

16.6 - 27.5
(22.05)

15 MHz 4.5 - 11.7
(8.1)

5.4 - 11.4
(8.4)

5.1 - 11.6
(8.35)

6.0 - 11.2
(8.6)

30 MHz 1.9 - 3.0
(2.45)

2.2 - 3.4
(2.8)

2.0 - 4.4
(3.2)

2.1 - 4.7
(3.4)



Table 4:

Sample K2 K3 K4 G2 G3 G4

K1-Unpolarised 14.75 ·1010 -162.0 ·1010 3.015 ·1015 2.0 ·10-3 -2.70 ·102 ?

K1-Polarised 16.45 ·1010 -193.0 ·1010 3.190 ·1015 2.0 ·10-3 -3.60 ·102 ?

S1-Unpolarised 14.95 ·1010 -104.0 ·1010 25.830 ·1015 2.0 ·10-3 2.35 ·102 ?

S1-Polarised 16.39 ·1010 -112.0 ·1010 74.700 ·1015 2.0 ·10-3 9.50 ·102 ?



Table 5:

Frequency
 (MHz)

Amplitude
 (10-10 m) b ′ β 2

5.0000 16.1000 7.8868665 10189.0192944
5.0000 17.1000 7.8868564 10189.0193498
5.0000 18.1000 7.8868456 10189.0194085
5.0000 19.1000 7.8868342 10189.0194704
5.0000 20.1000 7.8868222 10189.0195355
5.0000 21.1000 7.8868096 10189.0196039
5.0000 22.1000 7.8867964 10189.0196755
5.0000 23.1000 7.8867826 10189.0197503
5.0000 24.1000 7.8867682 10189.0198282
5.0000 25.1000 7.8867531 10189.0199094
5.0000 26.1000 7.8867375 10189.0199936

10.0000 13.7000 7.5983899 10189.3115224
10.0000 14.7000 7.5983551 10189.3116923
10.0000 15.7000 7.5983179 10189.3118707
10.0000 16.7000 7.5982783 10189.3120571
10.0000 17.7000 7.5982362 10189.3122507
10.0000 18.7000 7.5981917 10189.3124507
10.0000 19.7000 7.5981447 10189.3126563
10.0000 20.7000 7.5980953 10189.3128667
10.0000 21.7000 7.5980434 10189.3130808

15.0000 4.5000 7.1179597 10188.9037500
15.0000 5.5000 7.1179322 10188.9038908
15.0000 6.5000 7.1178992 10188.9040541
15.0000 7.5000 7.1178607 10188.9042369
15.0000 8.5000 7.1178166 10188.9044355
15.0000 9.5000 7.1177671 10188.9046459
15.0000 10.5000 7.1177120 10188.9048635
15.0000 11.5000 7.1176514 10188.9050830

30.0000 1.9000 4.5204777 10119.9357741
30.0000 2.0000 4.5204734 10119.9357936
30.0000 2.1000 4.5204689 10119.9358136
30.0000 2.2000 4.5204642 10119.9358341
30.0000 2.3000 4.5204592 10119.9358550
30.0000 2.4000 4.5204540 10119.9358762
30.0000 2.5000 4.5204486 10119.9358978
30.0000 2.6000 4.5204430 10119.9359195
30.0000 2.7000 4.5204372 10119.9359413
30.0000 2.8000 4.5204311 10119.9359631
30.0000 2.9000 4.5204249 10119.9359849
30.0000 3.0000 4.5204184 10119.9360064



Table 6:

Frequency
(MHz)

Amplitude
(10-10 m) b

1.0000 22.2000 7.9792006
2.0000 21.9375 7.9676506
3.0000 21.6750 7.9484015
4.0000 21.4125 7.9214540
5.0000 21.1500 7.8868090
6.0000 20.5500 7.8444731
7.0000 19.9500 7.7944449
8.0000 19.3500 7.7367255
9.0000 18.7500 7.6713158
10.0000 18.1500 7.5982165
11.0000 16.1400 7.5174985
12.0000 14.1300 7.4291053
13.0000 12.1200 7.3330337
14.0000 10.1100 7.2292790
15.0000 8.1000 7.1178349
16.0000 7.7233 6.9986233
17.0000 7.3467 6.8717153
18.0000 6.9700 6.7371089
19.0000 6.5933 6.5948018
20.0000 6.2167 6.4447918
21.0000 5.8400 6.2870760
22.0000 5.4633 6.1216518
23.0000 5.0867 5.9485163
24.0000 4.7100 5.7676668
25.0000 4.3333 5.5791006
26.0000 3.9567 5.3828152
27.0000 3.5800 5.1788086
28.0000 3.2033 4.9670794
29.0000 2.8267 4.7476268
30.0000 2.4500 4.5204514
31.0000 2.3550 4.2855400
32.0000 2.2600 4.0429119
33.0000 2.1650 3.7925730
34.0000 2.0700 3.5345314
35.0000 1.9750 3.2687980
36.0000 1.8800 2.9953872
37.0000 1.7850 2.7143169
38.0000 1.6900 2.4256098
39.0000 1.5950 2.1292932
40.0000 1.5000 1.8254007



Table 7:

Frequency
(MHz)

Amplitude A
(10E-10 m)

A1/A-1.0 A2/A A3/A A4/A A5/A A6/A A7/A

1.0 22.2000 0.149E-13 0.420E-04 0.575E-07 0.793E-11 0.375E-16 0.700E-22 0.642E-28
2.0 21.9375 0.909E-12 0.166E-03 0.449E-06 0.122E-09 0.114E-14 0.422E-20 0.765E-26
3.0 21.6750 0.987E-11 0.368E-03 0.148E-05 0.598E-09 0.828E-14 0.453E-19 0.122E-24
4.0 21.4125 0.528E-10 0.644E-03 0.343E-05 0.182E-08 0.332E-13 0.239E-18 0.847E-24
5.0 21.1500 0.192E-09 0.989E-03 0.653E-05 0.429E-08 0.966E-13 0.858E-18 0.375E-23
6.0 20.5500 0.510E-09 0.138E-02 0.106E-04 0.815E-08 0.214E-12 0.222E-17 0.113E-22
7.0 19.9500 0.114E-08 0.181E-02 0.159E-04 0.138E-07 0.411E-12 0.483E-17 0.278E-22
8.0 19.3500 0.225E-08 0.227E-02 0.224E-04 0.215E-07 0.709E-12 0.923E-17 0.590E-22
9.0 18.7500 0.403E-08 0.276E-02 0.299E-04 0.314E-07 0.113E-11 0.160E-16 0.111E-21
10.0 18.1500 0.666E-08 0.327E-02 0.385E-04 0.433E-07 0.168E-11 0.255E-16 0.191E-21
11.0 16.1400 0.737E-08 0.348E-02 0.405E-04 0.446E-07 0.169E-11 0.252E-16 0.184E-21
12.0 14.1300 0.730E-08 0.358E-02 0.403E-04 0.424E-07 0.153E-11 0.218E-16 0.152E-21
13.0 12.1200 0.639E-08 0.356E-02 0.377E-04 0.369E-07 0.124E-11 0.163E-16 0.106E-21
14.0 10.1100 0.483E-08 0.340E-02 0.327E-04 0.288E-07 0.866E-12 0.103E-16 0.595E-22
15.0 8.1000 0.301E-08 0.308E-02 0.259E-04 0.195E-07 0.503E-12 0.511E-17 0.253E-22
16.0 7.7233 0.366E-08 0.328E-02 0.285E-04 0.219E-07 0.574E-12 0.591E-17 0.296E-22
17.0 7.3467 0.431E-08 0.346E-02 0.310E-04 0.240E-07 0.635E-12 0.659E-17 0.331E-22
18.0 6.9700 0.492E-08 0.361E-02 0.331E-04 0.257E-07 0.683E-12 0.708E-17 0.354E-22
19.0 6.5933 0.545E-08 0.372E-02 0.348E-04 0.270E-07 0.715E-12 0.735E-17 0.362E-22
20.0 6.2167 0.586E-08 0.380E-02 0.361E-04 0.278E-07 0.727E-12 0.736E-17 0.355E-22
21.0 5.8400 0.612E-08 0.384E-02 0.369E-04 0.279E-07 0.719E-12 0.711E-17 0.332E-22
22.0 5.4633 0.620E-08 0.384E-02 0.371E-04 0.275E-07 0.690E-12 0.662E-17 0.296E-22
23.0 5.0867 0.608E-08 0.380E-02 0.367E-04 0.265E-07 0.642E-12 0.591E-17 0.252E-22
24.0 4.7100 0.577E-08 0.371E-02 0.357E-04 0.249E-07 0.578E-12 0.506E-17 0.203E-22
25.0 4.3333 0.528E-08 0.358E-02 0.342E-04 0.227E-07 0.502E-12 0.413E-17 0.155E-22
26.0 3.9567 0.464E-08 0.341E-02 0.320E-04 0.201E-07 0.419E-12 0.321E-17 0.111E-22
27.0 3.5800 0.390E-08 0.321E-02 0.293E-04 0.173E-07 0.333E-12 0.234E-17 0.744E-23
28.0 3.2033 0.311E-08 0.296E-02 0.262E-04 0.142E-07 0.251E-12 0.160E-17 0.460E-23
29.0 2.8267 0.233E-08 0.268E-02 0.226E-04 0.112E-07 0.178E-12 0.101E-17 0.259E-23
30.0 2.4500 0.161E-08 0.236E-02 0.188E-04 0.827E-08 0.116E-12 0.574E-18 0.129E-23
31.0 2.3550 0.167E-08 0.230E-02 0.191E-04 0.830E-08 0.113E-12 0.543E-18 0.119E-23
32.0 2.2600 0.172E-08 0.222E-02 0.193E-04 0.825E-08 0.109E-12 0.505E-18 0.108E-23
33.0 2.1650 0.174E-08 0.212E-02 0.194E-04 0.810E-08 0.104E-12 0.462E-18 0.956E-24
34.0 2.0700 0.174E-08 0.201E-02 0.194E-04 0.787E-08 0.968E-13 0.415E-18 0.834E-24
35.0 1.9750 0.172E-08 0.188E-02 0.192E-04 0.756E-08 0.891E-13 0.367E-18 0.715E-24
36.0 1.8800 0.167E-08 0.173E-02 0.189E-04 0.718E-08 0.808E-13 0.319E-18 0.601E-24
37.0 1.7850 0.160E-08 0.157E-02 0.184E-04 0.673E-08 0.720E-13 0.272E-18 0.495E-24
38.0 1.6900 0.151E-08 0.140E-02 0.178E-04 0.622E-08 0.631E-13 0.227E-18 0.399E-24
39.0 1.5950 0.140E-08 0.123E-02 0.170E-04 0.568E-08 0.543E-13 0.187E-18 0.315E-24
40.0 1.5000 0.127E-08 0.104E-02 0.162E-04 0.510E-08 0.459E-13 0.150E-18 0.242E-24



Table 8:

Frequency
(MHz)

Amplitude A
(10E-10 m)

A1/A - 1.0 A2/A A3/A A4/A A5/A A6/A A7/A

1.0 23.4000 0.679E-11 0.191E-04 0.123E-05 0.117E-10 0.399E-16 0.664E-22 0.584E-28
2.0 23.2625 0.425E-09 0.768E-04 0.972E-05 0.184E-09 0.125E-14 0.413E-20 0.722E-26
3.0 23.1250 0.472E-08 0.174E-03 0.324E-04 0.913E-09 0.925E-14 0.456E-19 0.119E-24
4.0 22.9875 0.259E-07 0.314E-03 0.759E-04 0.283E-08 0.380E-13 0.249E-18 0.861E-24
5.0 22.8500 0.965E-07 0.500E-03 0.146E-03 0.680E-08 0.113E-12 0.921E-18 0.396E-23
6.0 22.6900 0.280E-06 0.736E-03 0.250E-03 0.138E-07 0.274E-12 0.266E-17 0.136E-22
7.0 22.5300 0.687E-06 0.103E-02 0.391E-03 0.250E-07 0.576E-12 0.646E-17 0.383E-22
8.0 22.3700 0.149E-05 0.139E-02 0.575E-03 0.418E-07 0.109E-11 0.139E-16 0.935E-22
9.0 22.2100 0.293E-05 0.181E-02 0.807E-03 0.655E-07 0.191E-11 0.272E-16 0.204E-21
10.0 22.0500 0.536E-05 0.232E-02 0.109E-02 0.977E-07 0.314E-11 0.493E-16 0.409E-21
11.0 19.3600 0.564E-05 0.258E-02 0.112E-02 0.968E-07 0.301E-11 0.456E-16 0.365E-21
12.0 16.6700 0.523E-05 0.278E-02 0.108E-02 0.875E-07 0.256E-11 0.363E-16 0.273E-21
13.0 13.9800 0.418E-05 0.288E-02 0.964E-03 0.711E-07 0.189E-11 0.243E-16 0.166E-21
14.0 11.2900 0.277E-05 0.284E-02 0.785E-03 0.504E-07 0.116E-11 0.130E-16 0.771E-22
15.0 8.6000 0.141E-05 0.261E-02 0.560E-03 0.293E-07 0.552E-12 0.505E-17 0.243E-22
16.0 8.2533 0.176E-05 0.301E-02 0.626E-03 0.336E-07 0.646E-12 0.604E-17 0.296E-22
17.0 7.9067 0.214E-05 0.343E-02 0.689E-03 0.376E-07 0.736E-12 0.699E-17 0.347E-22
18.0 7.5600 0.252E-05 0.389E-02 0.748E-03 0.413E-07 0.817E-12 0.783E-17 0.392E-22
19.0 7.2133 0.289E-05 0.436E-02 0.801E-03 0.445E-07 0.886E-12 0.852E-17 0.426E-22
20.0 6.8667 0.322E-05 0.485E-02 0.846E-03 0.471E-07 0.938E-12 0.899E-17 0.446E-22
21.0 6.5200 0.351E-05 0.536E-02 0.883E-03 0.490E-07 0.970E-12 0.922E-17 0.450E-22
22.0 6.1733 0.373E-05 0.588E-02 0.910E-03 0.500E-07 0.980E-12 0.916E-17 0.437E-22
23.0 5.8267 0.387E-05 0.639E-02 0.926E-03 0.502E-07 0.966E-12 0.884E-17 0.409E-22
24.0 5.4800 0.391E-05 0.690E-02 0.931E-03 0.494E-07 0.930E-12 0.825E-17 0.368E-22
25.0 5.1333 0.384E-05 0.739E-02 0.923E-03 0.477E-07 0.872E-12 0.745E-17 0.317E-22
26.0 4.7867 0.368E-05 0.784E-02 0.902E-03 0.452E-07 0.795E-12 0.649E-17 0.262E-22
27.0 4.4400 0.341E-05 0.825E-02 0.869E-03 0.418E-07 0.703E-12 0.544E-17 0.207E-22
28.0 4.0933 0.307E-05 0.860E-02 0.823E-03 0.378E-07 0.601E-12 0.437E-17 0.155E-22
29.0 3.7467 0.266E-05 0.887E-02 0.766E-03 0.332E-07 0.496E-12 0.335E-17 0.110E-22
30.0 3.4000 0.221E-05 0.905E-02 0.698E-03 0.283E-07 0.392E-12 0.243E-17 0.731E-23
31.0 3.2900 0.236E-05 0.980E-02 0.720E-03 0.290E-07 0.397E-12 0.241E-17 0.708E-23
32.0 3.1800 0.249E-05 0.106E-01 0.739E-03 0.296E-07 0.397E-12 0.235E-17 0.675E-23
33.0 3.0700 0.260E-05 0.114E-01 0.755E-03 0.299E-07 0.393E-12 0.226E-17 0.633E-23
34.0 2.9600 0.269E-05 0.122E-01 0.766E-03 0.299E-07 0.384E-12 0.214E-17 0.585E-23
35.0 2.8500 0.275E-05 0.130E-01 0.773E-03 0.297E-07 0.371E-12 0.200E-17 0.533E-23
36.0 2.7400 0.278E-05 0.138E-01 0.776E-03 0.292E-07 0.353E-12 0.184E-17 0.478E-23
37.0 2.6300 0.278E-05 0.147E-01 0.775E-03 0.285E-07 0.332E-12 0.167E-17 0.422E-23
38.0 2.5200 0.275E-05 0.155E-01 0.769E-03 0.275E-07 0.309E-12 0.149E-17 0.367E-23
39.0 2.4100 0.269E-05 0.162E-01 0.758E-03 0.263E-07 0.283E-12 0.132E-17 0.315E-23
40.0 2.3000 0.260E-05 0.170E-01 0.742E-03 0.249E-07 0.256E-12 0.114E-17 0.265E-23



Table 9:

Frequency Amplitude K1-Unpolarised K1-Polarised S1-Unpolarised S1-Polarised

5 MHz 25 10-10 m 0.96524 0.94616 0.72935 0.98461

10 MHz 20 10-10 m 3.03273 2.96520 2.90238 4.48704

15 MHz 10 10-10 m 3.16582 3.10470 3.08937 4.79720

30 MHz   3 10-10 m 2.40786 2.39183 4.35913 8.08418
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